ITER : où en est-on ?

by

A Cadarache, situé dans le nord des Bouches-du-Rhône, près de la confluence du Verdon et de la Durance, à une quarantaine de kilomètres d’Aix-en-Provence, le Commissariat à l’énergie atomique (CEA) est chez lui depuis 1959. L’écrivain du cru, Jean Giono, s’était opposé en vain à cette installation qui avait pour objectif premier le développement du réacteur Rapsodie destiné à la propulsion des sous-marins nucléaires.

Le site du chantier d’ITER filmé par drone en février 2019 (photo © EJF Riche / ITER Organization)

Le 28 juin 2005, c’est pourtant bien loin de là, à Moscou, qu’à été prise la décision d’y construire le projet international ITER. Un acronyme qui signifie, comme chacun sait, International Thermonuclear Experimental Reactor, même si le nom évoque plutôt pour les latinistes le chemin, l’itinéraire vers le nouveau graal de la science moderne, rien de moins que le rêve prométhéen de reconstituer en laboratoire les forces cosmiques qui donnent l’énergie du soleil.

Contrairement à la fission nucléaire, à l’œuvre dans les réacteurs nucléaires classiques et qui consiste schématiquement à briser un atome lourd (l’uranium) pour dégager de l’énergie, la fusion nucléaire revient au contraire à fusionner, dans des conditions de pression et de température extrêmes comme celles qui règnent à la surface des étoiles, des atomes légers d’hydrogène pour créer de l’hélium. L’intérêt d’une telle démarche est multiple, d’une part parce que les quantités d’énergie produite peuvent être (en théorie) colossales, d’autre part du fait que la matière première est nettement plus abondante et surtout parce que le processus ne produit pas de déchet radioactif ingérable et ne présente pas de risque d’emballement incontrôlable : avec la fusion, la difficulté n’est pas d’arrêter les réactions en chaîne mais plutôt d’arriver à les amorcer…

Principe de fonctionnement d’une usine électrique à fusion par confinement magnétique (source © Ph. Magaud / CEA-IRFM)

L’idée de départ est russe et on doit les premières avancées en la matière au physicien Andreï Sakharov, inventeur de la bombe H, au travers de la construction d’une chambre de confinement magnétique de forme toroïdale, baptisée Tokamak et dont le premier modèle est entré en service en 1958. Dans les années 1970, le système a été développé un peu partout dans le monde, y compris en France à Fontenay-aux-Roses, puis à l’échelle européenne avec le Joint European Torus (JET) de Culham au Royaume-Uni, entré en service en 1983 et qui fut le premier à créer une fusion contrôlée à partir d’un mélange deutérium-tritium en 1991. Celui installé à Cadarache en 1988 (Tore Supra) est le premier à avoir été équipé d’aimants supraconducteurs permettant de créer de puissants champs magnétiques en continu, et il détient depuis 2003 le record de durée de fonctionnement (6 minutes et 30 secondes).

Vue de l’enceinte plasma du tokamak Tore Supra (photo © P. Stroppa / CEA)

Mais les difficultés à surmonter en vue de créer des conditions favorables à la fusion nucléaire pendant assez longtemps et de manière à produire plus d’énergie qu’on en consomme, sont telles que les scientifiques ont compris depuis des années que les nations avaient tout intérêt à coopérer entre elles plutôt que d’agir de manière concurrente. C’est tout l’intérêt du projet ITER, dont l’idée a été suggérée en 1983 par Mikhaïl Gorbatchev à François Mitterrand, et qui mobilise pas moins de 35 pays puisque se sont associés aux 28 de l’Union européenne, les États-Unis, la Russie, la Chine, l’Inde, la Corée du Sud, le Japon, et même la Suisse.

Si le site de Cadarache a finalement été retenu pour cette première phase du projet, c’est au Japon que devrait se produire l’étape suivante. L’objectif d’ITER est en effet de démontrer uniquement la faisabilité du processus en chauffant à 150 millions de degrés Celsius un plasma composé de deutérium et de tritium (deux isotopes de l’hydrogène), de quoi produire une énergie de 500 MW, soit dix fois plus que l’énergie théoriquement nécessaire pour chauffer le plasma à cette température. Si tout va bien, cette étape devrait être atteinte en 2025 et la pleine exploitation n’est prévue qu’en 2035. C’est alors qu’entrera en scène le versant japonais du projet, DEMO (pour Demonstration Power Plant), un réacteur qui devrait lui fonctionner en continu et alimenter directement le réseau électrique en produisant, d’ici 2048, une énergie de 2 GW, en attendant la prise de relai par des prototypes industriels qui préfigureront peut-être nos générateurs électriques de demain.

Bâtiment de conversion électrique (à gauche) destiné à alimenter les aimants du réacteur et (à droite) usine cryogénique avec les réservoirs de stockage d’hélium (photo © EJF Riche / ITER Organization)

D’ici là, l’assemblage du monstre ITER se poursuit sur le site de Cadarache. L’entreprise est gigantesque et l’on considère qu’il s’agit d’ailleurs du plus ambitieux projet scientifique du monde. Il consiste à assembler avec des moyens de levage monstrueux et avec une précision d’horlogerie des pièces qui ont été construites aux quatre coins du monde et qui sont acheminés par une route spécialement aménagée à cet effet depuis le port de Fos-sur-Mer. Bien entendu, le chantier a pris du retard et a déjà subi de nombreux aléas qui ont fait explosé la facture de 5 à probablement 19 milliards d’euros…

Lancé en 2010, le chantier, qui s’étend sur 42 ha, connaît actuellement un pic d’activité avec pas moins de 5000 personnes mobilisées, ouvriers, ingénieurs, scientifiques, administratifs… Le Tokamak lui-même pèse 400 000 tonnes. Monté sur patins anti-sismique et pourvu d’un bouclier en béton armé de 3 m d’épaisseur pour protéger contre les radiations, il mesure pas moins de 80 m de hauteur. Il est entouré par les tours de refroidissement, les pompes à vide, la salle de contrôle et un dispositif de maintenance robotisé permettant de monter et démonter à distance les éléments de la chambre de combustion. De nombreux ateliers ont été érigés sur le site même pour assembler les composants, dont les cryostats (fabriqués en Inde) ou pour réaliser le bobinage des aimants (dans un bâtiment de 257 m de long !). En mars de cette année ont ainsi eu lieu les premiers essais de fonctionnement du portique de sous-assemblage pour la chambre à vide et en juin sont attendues les premières livraisons des éléments du bouclier thermique fabriqué en Corée.

Vue aérienne du chantier d’ITER sur le site de Cadarache en novembre 2018 (source © ITER Organization)

Depuis le début des travaux, 4 km de galeries ont déjà été creusées uniquement pour faire passer les câblages destinés à l’alimentation électrique (équivalent à celle d’une ville de 12 000 habitants) et aux télécommunications. Des canalisations pour la gestion des eaux pluviales du site ont été installées sur 3,9 km et 36 km de canalisations pour l’acheminement des eaux industrielles et sanitaires sont en cours de déploiement. Plusieurs bâtiments dont celui qui abrite les bassins des tours aéroréfrigérantes ont déjà été livrés ou sont en cours d’achèvement. Vu de haut, le chantier fait figure d’une immense fourmilière en pleine activité.

Espérons désormais que cet ambitieux projet de coopération scientifique internationale comme on en a peu réalisé dans l’histoire de l’humanité et qui se déroule à nos portes tiendra ses promesses et contribuera à fournir l’énergie dont l’on aura besoin pour remplacer rapidement combustibles fossiles et centrales nucléaires d’un autre âge…

L. V.

Étiquettes : , , , , , , , , , , ,

2 Réponses to “ITER : où en est-on ?”

  1. MM Says:

    Le 21 novembre 2006, l’accord international ITER, a été signé entre les parties membres au Palais de l’Elysée. Les pays partenaires fourniront pendant plusieurs décennies une équipe internationale résidente d’environ 1 000 chercheurs et techniciens, sur la base de contrats d’une durée moyenne de cinq ans dont la présence génère des besoins de scolarisation spécifiques.

    Depuis son ouverture en septembre 2007, L’Ecole Internationale PACA scolarise dans un programme d’enseignement bilingue la quasi-totalité des enfants issus des familles ITER ainsi que de nombreux élèves locaux de nationalités européennes et extra-européennes. Le dispositif d’enseignement, allant de la maternelle au Baccalauréat, compte actuellement 6 sections linguistiques (Anglais, Allemand, Espagnol, Italien, Chinois et Japonais) dans lesquelles les enseignements sont dispensés selon le principe de la parité : 50% en langue française et 50% dans la langue de section. De plus, dès le niveau du collège, les élèves anglophones peuvent suivre un enseignement anglophone européen où les cours sont dispensés à 80% en anglais.

    Le coût de la construction de ce bâtiment conçu par Rudy Ricciotti et de son fonctionnement doit être ajouté au coût général de l’opération ITER.

  2. A Manosque, on mise sur l’énergie verte | Cercle Progressiste Carnussien Says:

    […] de tout miser sur le projet ITER et ses promesses d’accéder un jour peut-être à la maîtrise de la fusion nucléaire, le maire […]

Répondre

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google

Vous commentez à l'aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.


%d blogueurs aiment cette page :